16th January 1992

Support Group Application Note ‘

i Acorn®

Author:
Tube Application Note
Applicable Related
Hardware : Application
BBC B Notes:
BBC B+

BBC Master 128

Copyright © Acorn Computers Limited 1992

Every effort hasbeenmadeto ensurethatthe informationin this leafletis true andcorrectat

thetime of printing. However,the productsdescribedn this leafletaresubjectto continuous Support Group
developmenandimprovementsand Acorn Computerd.imited reserveshe right to change o
its specificationsat any time. Acorn Computerd.imited cannotacceptliability for any loss Acorn CompUters Limited
or damagearising from the use of any information or particularsin this leaflet. ACORN, Acorn House
ECONET and ARCHIMEDES are trademarks of Acorn Computers Limited. ..

Vision Park

Histon

Cambridge CB4 4AE

Support Group Application Note No. 004sue 1 16th June 1992

Overview

One of the BBC Microcomputer'sstrengthslies in its sophisticatedOperatingSystem,the MOS. This
operatingsystemhas avery fast and flexible responsdo Interrupts,which allows the machineto take a
wide rangeof peripheralsand handlethem with ease. The TUBE is a fast bus interfacethroughwhich
additionalCo-processorglsocalledsecondorocessorsganbe added. whena co-processois connectedo
the TUBE interface,the BBC Micro continuesto look afterall of the /O processingwhilst the additional
co-processor now carries out the task of running the Language Application.

The Co-Processor

The co-processocanbe basedon any microprocessochip, and can haveany memorysizethat thischip
canaddress. Units alreadyin existenceinclude 64KRAM 6502, 1MBit 32016,64K Z80 etc. You may
wonderwhy thereis any point in addinga unit usinga 6502 chip, the sameseriesasthe BBC Micro itself,
and with a RaM size the same as the Model B+? The reasons are twofold:

1) Speed whilst the co-processois carryingout the computationatasksof the Application program the
BBC Micro itself can look after the screen display, printer, disc drive etc.

2) Memory- In the Model B or B+ with a Disc Filing System the positionof PAGE is typically &1900.

The applicationhasto fit abovethis and below HIMEM. In the Model B, HIMEM movesdown whena

high resolutionscreerdisplayis selectedurtherreducingthe memoryavailable. In the 6502 co-processor,
PAGE is typically at &800 and HIMEM is at &8000 regardless of Filing System and screen display mode.

The TUBE interface

The co-processois connectedo the TUBE connectoron the BBC Micro via the TUBE cable. In the
systemthe BBC Micro is referredto asthe "host", andthe co-processoasthe "parasite”. Within any co-
processorthereis a customchip, the TUBE ULA, which providesthe actual communicatinginterface
betweenboth processors.The processorsre not synchronisedvith oneanother,andthe ULA chip forms
an effective setof pigeonholesthroughwhich eachprocessorcanleaveinformationfor the otherto read
when it is ready.

For the TUBE interfaceto work, therehasto be a setof machinecodein both processorsvhich looks after
the communicatingprotocolson both sidesof the ULA. In the BBC Micro, this "host" code resides
typically in one of the sidewaysROM's ie NFS 3.34, DNFS, 1770 DFS etc. In the co-processorthe
"parasite” code resides in a small ROM commonly called the "boot" ROM.

Softwar e Compatibility

Applicationssoftwarewhich hasbeenwritten for the BBC Micro itself maynot runon a 6502co-processor
if it hasnot followed therulesfor usingthe Tubeinterface. applicationswriters may becomeover familiar
with the memorymap in the BBC Micro and it's operatingsysteminterfaceand "bypass"the standard
routines. This applicationwill thenalmostcertainlyfail whenit is runin the differentmemorymapof a
cop-processoandwherenot all of the assumednterfacesare available. In the following sectionsof the
Application Note, the various'legal” way of interfacingwith the operatingsystemwill be described. if
properly implementedthe Application Programwill thenrun in eitherthe BBC Micro or the 6502 co-
processorwith no modification. If the communicationtechniquesacrossthe Tube interface are also
properlyimplementedhen maximumadvantageof the overall systemspeedcan be obtainedwithout one
processor waiting an unreasonable length of time fo the other processor to respond.

Support Group Application Note No. 004sue 1 2

Support Group Application Note No. 004sue 1 16th June 1992

The Load addresausedby filing systemfile namescontainsa "high order” addresswhich indicateswhich
processomemorymapit is to beloadedinto. for examplealoadaddresof &FFFFxxxx indicatesthatthe
file shouldbeloadedinto thel/O processoarea. A loadaddres®f &0000xxxx indicatesthatthe parasitds
thedestination.In practice filing systemsshorten theénigh orderbytesto two ie &FFxxxx or &00xxxx. A
file loadedunderBASIC control will load into the currentlanguageprocessoregardlessf the file load
address. This ability to force *LOADiIng of files into a particularprocessorcan be usedto setup user
machine code from a filing system into the I/O processor when the co-processor is in use.

The TUBE ULA

As statedpreviously,the ULA actsasa parallelinterfacebetweerntwo asynchronouprocessosystems. It
consistsof four byte-wide read-only registersand four byte-wide write-only registers. eight bytes of
memorymapped//O spaceare usedto addresgheseregisters four for the dataregistersand four for the

associated status registers.

Register number 1

/O address Co-proc address

status &FEEO &FEF8 write/read (clears IRQ)
data &FEE1 &FEF9 bit 7 - data available/IRQ
bit 6 - not full

Parasiteto Host: Carriesthe OSWRCHcall. Dataregisteris a FIFO that can handlea VDU command
length (10 bytes).

Hostto Parasite: Thereis a 1 byte buffer. It is usedto generatdRQ'sin the parasitefrom eventsin the
host.

Register number 2

/O address Co-proc address

status &FEE?2 &FEFA write/read
data &FEE3 &FEFB bit 7 - data available
bit 6 - not full

Usedto implementOS callsthattakea long time or that cannotinterruptHosttasks. The parasitepasses
byte describingthe requiredtask. The twoprocessorshenexchangedata until the taskis complete. OS
callshandledthroughthis registerinclude: OSRDCH,OSCLI,OSBYTE,OSWORD,OSBPUT,0SBGET,
OSFIND, OSARGS, OSFILE, OSGBPB.

Register number 3

I/O address Co-proc address

status &FEE4 &FEFC write/read
data &FEES5 &FEFD bit 7 - data available/NMI
bit 6 - not full

Used for the background task of fast data transfer between the two processors.

Support Group Application Note No. 004sue 1 3

Support Group Application Note No. 004sue 1 16th June 1992

Register number 4

I/O address Co-proc address
status &FEEG6 &FEFE write (sets IRQ)/read (clears IRQ)
data &FEE7 &FEFF bit 7 - data available/IRQ
bit 6 - not full/IRQ

Usedasthe control channelfor block transfersgoing throughRegister3, and alsothe transfer registefor
error stringsfrom hostto parasite. In both casesthe hostinterruptsthe parasiteby placinga byteinto the
Register. In the former case it is a byte describing the required action, in the latter it is an error code.

Writing for compatibility

The applicationssoftwarewriter needsto know which operatingsysteminterfaceswill work "acrossthe
tube", and which will not. He will also needto know how to implementothertechniquedor thosethat
don't work.

Valid calls acrossthe Tube: OSWRCH,OSBYTE (Y only returnedfor A>= &80), OSRDCH, OSCLlI,
OSWORD, OSBPUT, OSBGET, OSFIND, OSFILE, OSARGS, OSGBPB.

Note:
a) OSBYTE calls have some restrictions in the co-processor ie:
&00-&7F - Only X (not Y) is sent and returned.
&82 - Always returns 00 in both X and Y (ie the parasite high order address).
&83 - Always returns 00 in X and 08 in Y (ie OSHWM in parasite).
&84 - Always returns &3000 or &B800 (ie the position of HIMEM in the parasite).

b) OSWORD call parameters sent and received across the Tube can be ascertained from the following t:

OSWORD No. Params sent Params received
1 (&01) 0 5
2 (&02) 5 0
3 (&03) 0 5
4 (&04) 5 0
5 (&05) 2 5
6 (&06) 5 0
7 (&07) 8 0
8 (&08) 14 0
9 (&09) 4 5
10 (&0A) 1 9
11 (&0B) 1 5
12 (&0C) 5 0
13 (&0D) 0 8
14 (&OE) 16 16
15 (&0F) 16 16
16 (&10) 16 13
17 (&11) 13 13
18 (&12) 0 128
19 (&13) 8 8
20 (&14) 128 128
<128 (&80) 16 16
>127 (&7F) XY offset 0 XY offset 1 (ie in param block)

Support Group Application Note No. 004sue 1 4

Support Group Application Note No. 004sue 1 16th June 1992

Invalid calls across the Tube: OSRDRM/OSRDSC, OSWRSC

Other invalid actions include:

Peeking/Poking memory unless the location is guaranteed to be the same in both memory maps.
Directly addressing memory mapped 1/O locations such as VIA.

Directly address &F4, the ROM latch variable.

Keeping data areas in &A00, &B00 and &C00. These are above PAGE in the parasite.

Using page#4, 5,6 and7 in the I/O processornormally reservedor the currentlanguage.theseare used
by the Tube code.

Usingthetwo pagesabovenormal PAGE positionin the I/O processor.Theseare usedfor font explosion
whena parasiteprocessors beingused. Thereforestayabove&2100, if PAGEis normally &1900, for user
machine code.

Valid communicating techniques:

OSBYTE 146 - Read from FRED (1MHz bus).

OSBYTE 147 - Write to FRED (1MHz bus).

OSBYTE 148 - Read from JIM (IMHz bus).

OSBYTE 149 - Write to JIM (1MHz bus).

OSBYTE 150 - Read from SHEILA (memory mapped I/O).
OSBYTE 151 - Write to SHEILA (memory mapped I/O).
OSBYTE 157 - Fast Tube BPUT.

OSBYTE 234 - Read Tube presence.

OSWORD 5 - Read from /O processor (transfers 1 byte).
OSWORD 6 - Write to I/O processor (transfers 1 byte).
OSWORD224t0 225 - PassedhroughUSERYV vector(Cantransferup to 128 byteseitherway acrosshe
Tube).

Some typical examples:
a) Moving a few bytes: Use OSWORD 5 or 6 from the co-processor the appropriate number of times.

b) Moving up to 128 bytes: OSWORDY5 or 6 is typically too slow for morethana few bytes,hencethe
following is arecommende@pproactfor the transferso or from the co-processoandinitiated by the co-
processor:

Use OSWORDSIn the range&E0(224) to &FF(255). These"unknown" OSWORDSare passedhrough
the USERV vectorat &200 in the I/O processor.Thusto transfer64 bytesfrom the co-processoto the I/O
processor we select, say OSWORD &EO, with the following parameter block:
XY +0 68 bytes to transmit

1 0 bytesto receive

2 LO Lo byte of destination in I/O processor

3 HI Hi byte of destination in 1/0O processor

4 x 1stbyte of 64

| | |
68 x 64th byte of 64

To transmit64 bytesfrom the I/O processoto the co-processorwve select,say OSWORD&E1, with the
following parameter block:

Support Group Application Note No. 004sue 1 5

Support Group Application Note No. 004sue 1 16th June 1992

XY +0 4 bytes to transmit
1 68 bytes to receive
2 LO Lo byte of source location in 1/0O processor
3 HI Hi byte of source location in 1/O processor

In practiceyou would interceptthe USERV vectorin the I/O processofat &200,1) for the first run of the
program. When&EO is interceptedthe datafrom the parameteblock alreadysetup is readyto be moved
acrosshe Tubeby the co-processorlubecodeinto the I/O processofocationgivenin the parameteblock.
Controlis returnedto the program. When&E1 is interceptedthe datais takenfrom the addresgivenin

the parameteblock andplacedin the parameteblock startingat addresoffset4. Following this, the Tube
code will copy the data across the Tube into the co-processor into the original parameter block location.

c) Moving largequantitiesof data: To movelargequantitiesof data,for examplea completescreerupdate,
the fast Tube BPUT OSBYTE call is used. Prior to the call, somemachinecodeis placedin the I/O
processoreadyto handlethe dataasit arrivesacrosshe Tubefrom the co-processor Whendatais ready
to be moved acrossthe Tube,an OSBYTE &9D (157) is madeto initiate the userscodeto in the I1/O
processor.The datais movedthroughTuberegisterl andhandledby the usercodeon the otherside. Note
thatall OSBYTE calls are vectoredthroughthe BYTEV vectorat &20A,B in the I/O processorandthis
vectorhasto beinterceptedo detectan OSBYTE &9D call andpick upthe X andY parameterso beused
by the user'scode. The advantageof OSBYTE &9D over other OSBYTE calls is that afterthe X andY
parameterfiave beersentacrossthe Tube,controlis immediatelyreturnedto the parasite. no parameters
are returned.

Support Group Application Note No. 004sue 1 6

Support Group Application Note No. 004sue 1 16th June 1992

The Correct Use of Tubes

The Tube (c)Acorn Computersetc. is both a customchip anda setof protocols. The protocolscontrolthe
flow of control anddatabetweera secondprocessoandthe BBC machineto which it is attached.Clearly
the implementationof theseprotocolsin the secondprocessoris different with different processorsand
operatingenvironmentsso this documentis not concernedwith secondprocessorcode. This document
doeshoweverpleaseconstraintson the performanceof secondprocessorsas the descriptionof the Tube
useon the BBC machinesideincludesexpected responsienessothatthe BBC machineuserneednot poll

the hardware.

Conventions.

We assumeyou know aboutthe 6502, and a bit aboutBBC machines. Hexadecimahumbersare written
&<Hex digit> (<Hex digit>"") eg &FEES5, &0406. Decimal numbersare just written. Host meansBBC
computer, parasite means second processor.

1. Claiming the Tube

Beforeyou can usehe Tube,you mustclaim it successfully. This is to preventreentrancyproblemswith

backgroundandforegroundtaskstrying to usethe systemat the sametime, for instanceduring an Econet
(c) peek. Of course peforeattemptingto usethe Tubesystemyou mustbe certainthatthe Tubeis present,
by usingOSBYTE call &EA with Y=&FF, X=0. Theanswer,n X, is O if thereis no Tubeor &FF if the
Tubesystemis present.Only if the Tubeis presenimayyou call the Tube codeentry point, asotherwiseit

is language workspace eg BASIC's variables.

To claim the Tubeyou mustcall the Tube codeentry point at &0406 with a reasoncodeof &CO+x in the
accumulator.x is anID codewhich shouldidentify you uniquely. this call returnwith the carry setif the
claim wassuccessfulcarry clearif it failed. Failureimpliesthatsomebackgroundaskis usingthe Tube,
sothe usualcourseof actionis to keeptrying until yu succeed.For example the DFS usesthe following
subroutine (MASM format)

CLATUB PHA ; Save A, as it happens
CLATBO LDAIM &C1 ; My magic number
JSR &0406 ; Tube code entry point
BCC CLATBO ; If it failed try again.
PLA ; Recover A
RTS

Some other magic numbers which have been allocated are:

&CO - Cassette filing system

&C1 - Disc filing system - DFS

&C2 - Econet - Low level primitives

&C3 - Econet filing system

&C4 - ADFS

&C5 - Teletext

&C6 - Acorn in-house Terminal - HOSTFS (?)
&C7 - VFS - video discs

&C8 - 64/128k beebs sideways RAM utils
&C9 - Z80 chaps, CP/M

Support Group Application Note No. 004sue 1 7

Support Group Application Note No. 004sue 1 16th June 1992

&CF - Acacia RAM FS (not allocated by us!) - also user applications

The ID code is in fact a six bit quantity, so you should use:
LDAIM &CO+MYID

JSR &0406

in your code.

Whenyou havefinishedusingthe Tubeyou mustreleasat sothatotherusersmayclaimit. Sothatanother
user cannotreleasethe Tube when you claimed it, you must call the entry point with &80+x in the
accumulatorwherex is the samemagic numberyou usedwhen claiming. For exampleDFS usesthe
following subroutines.... (MASM format):

RELTUB PHA ; Save A
LDAIM &81 ; Magic number
JSR &0406 ; Tube entry point
PLA ; Get A
RTS

2) Data Transfer SExecution

The sameentry pointis usedto initiate a datatransferthroughthe Tube. Thetype of transferis selectedoy
meansof a reasoncodein the accumulator. You mustalsotell the systemwherein the secondprocessor's
memoryspaceto startthe transfer. You must placethe addressof te first byte to the moved (sourceor
destination,dependingon the transfertype, or the Executeaddressif you are forcing executionin the
parasite)n four bytesof memoryin the BBC machine Jow byte first asusual,andput the low byte of the
address of these four bytes in X and the high byte of the address of the four bytesinY. So. .

Four byte address in BBC m/c

YX---> . Low byte 2\
MidLo byte : >------ > data byte in second processor.
MidHi byte 2
Hi byte 2

Reason codes for data transfers are as follows:

RC Description Initial delay Delay per byte
0 Multi byte transfer, parasite to host 24 uS 24 uS
1 Multi byte transfer, host to parasite 0 24 uS

These transfer any number of bytes in
the appropriate direction - terminate by
releasing the Tube or recommanding
for another protocol.

2 Multi pairs of bytes transfer, parasite

to host 26 uS 26 uS/pair
3 Multi paris of bytes transfer, host to

parasite 0 26 uS/pair

These transfer an even number of bytes
in the appropriate direction, faster than

protocols 0 and 1 - terminate by
Support Group Application Note No. 004sue 1 8

Support Group Application Note No. 004sue 1 16th June 1992

releasing the Tube or recommanding
for another protocol.

4 Execute - Execution starts in the parasite at
the address pointed to by YX. This call
contains an implied release and does not
return to you.

5 Reserved - this call is used in handling OS
calls which are passed across the Tube.

»

256 byte transfer, parasite to host 19 uS
256 byte transfer, host to parasite 0
These transfer exactly and only 256 bytes
only after 256 bytes are transferred may

the system be recommanded or released.

10 uS/byte
10 uS/byte

\‘

Having commandedhe systemyou may nowtransferthe data. Theinitial delayis the time you mustwait
after control returnsto you beforeyou transferthe first byte of data. The port usedto transferthe datais
memorymappednto the BBC machineat location&FEES5 (anothemagicnumber!), soeitherdo anLDA
&FEES for parasite to host or STA &FEES5 for host to parasite to transfer the data.

eg To transfer 256 bytes of data into an arbitrary page in the BBC machine memory from the parasite.

; Set up page zero locations &80, &81 to point to the destination page
; Set up locations &3000, &3001, &3002, &3003 to contain the source address in the parasite

LOOP LDA &FEES5

CLAIM LDAIM &CO+&10 ; Say my ID is 16
JSR &0406 ; Claim the Tube
BCC CLAIM
LDXIM &00 ; Lo byte of &3000
LDYIM &30 . Hi byte of &3000
LDAIM 6 . P ->H, 256 bytes
JSR &0406
JSR ANRTS ; 6 US delay
JSR ANRTS ; 12 uS delay
JSR ANRTS ; 18 uS delay
LDYIM O ; so the initial delay in 19 uS

; Get it from the port (2 uS = 2)

STAIY &80 ; Put the data byte (+3 uS =5)
NOP ; (+1uS =6)
NOP ; (+1uS=7)
NOP ; (+1uS =8)
INY ; (+1uS =9)
BNE LOOP ; Next data byte (+1.5 uS = 10.5 uS/byte)

LDAIM &80+&10

JSR &0406

; Release code + My ID
; Release the Tube

Support Group Application Note No. 004sue 1

Support Group Application Note No. 004sue 1 16th June 1992

ANRTS RTS

Execute:

Calling the Tube codewith A=4 is usedto force executionto startin the secondprocessoiat a location
definedby the parasite. This is usedby filing systemsvhen*RUNnNIng afile. Thefiling systemclaimsthe
tube,loadsthe programcodeinto the secondorocessoRAM andthenusescall 4 with YX pointing to the
exec address of the file to start execution of the code.

3) OSWORD calls

Thesearea few thingsyou shouldknow if you aregoingto useyour own OSWORDcallsto passcontrol/
data back and forth across the Tube.

Low numbered OSWORD calls:

Thesehave variable numbersof parameterdoth in and out. In practice,for all OSWORD calls with
A<128, 16 bytesarepassecachway. This coversall the Acornassignedallsandallowsthemto be made
transparently from either side of the Tube.

High numbered OSWORD calls:
OSWORDcallswith A>128 havea specialformatto allow a variablenumberof parameterso be passed
each way.

YX ---->n (byte)
YX+1 m (byte)
YX+2 data

when the call is madein the secondprocessorn bytes (inclusive of the bytescontainingn and m) are
copiedinto the I/O processorthenthe call is madetherewith YX pointing to the copy. Whenthe call
returns,m bytes(inclusiveagain)are copiedbackinto the secondprocessor.2 <= n,m <= 128,soyou can
passat most126 bytesof databackandforth. egif youwishto passa4 byterecord, thdirst byte of which
IS a status return, use:

YX -=> 6 ; 6 bytes to the 1/0O processor
3 ;3 bytes returned
dataO
datal
data2
data3

Support Group Application Note No. 004sue 1 10

Support Group Application Note No. 004sue 1 16th June 1992

TUBE AC Electrical Specification

02 e A

- By o 0 |
RW) o
~.
MRDS | 2 |
NWDS | | ‘ 2
3 | a 3 I a
- - e T
AO-2 ‘ ‘ L [o
pE—
& -6
7 8
Do-7 t‘ - = _____
s Lil‘ ﬁ4 J'F11 ‘_F4
]] |

NB On the hostside,0, is the timing referenceand R/W givesthe direction of transfer. On the parasite
side, the timing and direction are implied by MRDS or NWDS.

MIN MAX
1) R/W setuptop 35ns
2) timing strobe pulse width 110 ns
3) address set up time 35ns
4) address and chip select hold times 10 ns
5) data out delay time 70 ns
6) data out hold time 20 ns
7) data in set up time 50 ns
8) data in hold time 20 ns
9) R/W hold time 10 ns
10) cycle time 250 ns
11) CS set up time 20 ns

The chip must operate within this specification, as this meets 4MHz 6502 requirements.
All other timings, such as across tube transfer times, are non critical, but are expected to be
most 1 or 2 microseconds
Interrupt Operation
The tube hasthree processolinterrupt outputs,two to the parasite(PIRQ & PNMI) and oneto the host
(HIRQ). Eachline hasan enablebit, and PIRQ hastwo, one for eachpossibleinterrupt source. The

interrupt lines go active (low) under the following conditions:

HIRQ Q =1 and register 4 has data available in the parasite to host latch

Support Group Application Note No. 004sue 1 11

Support Group Application Note No. 004sue 1 16th June 1992

PIRQ either: | =1 and register 1 has data available in the host to parasite latch
or: J =1 and register 4 has data available in the host to parasite latch
(or both)
PNMI either: M=1 V=0 1 or 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite
to host register 3 FIFO (this allows single byte transfers across
register 3)

or: M=1 V=1 2 bytes in host to parasite register 3 FIFO or 0 bytes in parasite to h
register 3 FIFO. (this allows two byte transfers across register 3)
(or both)

In all caseghe interruptconditionis clearedby removingthe causejn the caseof HIRQ or PIRQ reading
the datafrom the appropriateregister,in the caseof PNMI readingor writing datato or from register3 as
appropriate.

Reset Operation

An active (low) signalon HRST initialisesthe tubeto a known state,and automaticallyproducesa PRST
active output to reset the parasite system.

The stateis T, P, V, M, J, |, Q are all set to zero.

All theregistersarepurgedexceptthatregister3 hasonevalid but insignificantbytein the parasiteto host
FIFO (this is to prevent an immediate PNMI state after PRST).

TheT controlbit allowsthe processoto resetthe Tubeto the abovestatewith the exceptionthatP,V, M, J,
I & Q are unaffected,and P allows separataesetof the parasiteprocessoiby the host under software
control. Theseresetsareactivatedby settingthe respectivelags,andthey mustbe clearedbeforethereset
device will operate again, unless of course HRST is activated in the mean time.

DMA Operation

The DRQ pin (active state= 1) may be usedto requesta DMA transfer- whenM = 1 DRQ will havethe
oppositevalueto PNMI, anddepend®n V in exactlythe sam way(seedescriptionof interruptoperation).
DACK thenselectgegister3 independentlyf PAo-2andPCS,andforcesareadcycleif PNWDSis active
or awrite cycleif PNRDSIs active(notinversesenseof PNWDSandPNRDSsothatthe DMA systemcan
read the data from memory an write it into the Tube in one cycle).

Control and Status Flags

In the abovetable the positionsin the memorymap of the variousstatusand controlbits are shown,and
their significance is explained below.

Al, A2, A3,Ad=1 data available in register 1, 2, 3, 4
F1,F2,F3,F4=1 register 1, 2, 3, 4 not full
N =1 register 3 action required (if M = 1 then PNMI active)

The dataavailableflag signifies dataavailableto the processoreading theflag, whereagshe not full flag
shows that the register from the processor reading the flag has space for more data.

Support Group Application Note No. 004sue 1 12

Support Group Application Note No. 004sue 1 16th June 1992

In the caseof a simplelatch suchasregister2, A2 on the hostsideandF2 on the parasiteside will always
havethe oppositevalue. In the caseof the FIFO registersdatais availablewhenthereis oneof morevalid
byte in the register, but the not full flag only becomes inactive when the entire register is loaded.

All registersaresimplelatchesexceptregister3, which has2 byte FIFOsin eachdirection,andregisterl,
which has atenor morebyte FIFO from the parasiteto the host. The hostto parasitepartof registerl is a
simple latch.

enable HIRQ from register 4

enable PIRQ from register 1

enable PIRQ from register 4

enable PNMI from register 3

two byte operation of register 3
activate PRST

clear all Tube registers

set control flag(s) indicated by mask

nHI<Z<~« -0
Il
RPRRPRPRRPRRpPPA

Theseflagsare sebr clearedaccordingo thevalueof S, egwriting 92 (hex)to addres® will setV andl to
1 but notaffectthe otherflags,whereasl2 (hex) wouldclearV andl without changingthe otherflags. All
flags except T are read out directly as the least significant 6 bits from address O.

Register 3 Operation

Register3 is intendedto enablehigh speedransfersof large blocksof dataacrossthe tube. It canoperate
in oneor two bytemode,dependingontheV flag. In onebyte modethe statushits makeeach FIFQappear
to beasinglebytelatch- afteronebyteis written the registerappeargo befull. In two byte modethe data
availableflag will only be assertedvhentwo byteshave beerentered,andthe not full flag will only be
assertedvhenboth byteshave beememoved. Thusdataavailablegoing active meansthat two bytesare
available butit will remainactiveuntil both byteshave beememoved. Not full goingactivemeanghatthe
registeris empty, but it will remainactive until both byteshave beerentered. PNMI, N and DRQ also
remain active until the full two byte operation is completed.

General Description

The Tubeis a completelyasynchronougarallelinterfacebetweentwo processosystems.To eachsystem
it resembles conventionaperipheraldevice,occupying8 bytesof memoryor I/O space.within thatspace
are four byte wide readonly latches,andfour byte wide write only latches,plus associateaontrol flags.
Someof the latches argust that- datawritten in onesideis readout of the otheron the nextreadto that
addressput somearein fact FIFO buffers,which storetwo or more bytesto be readout in the orderthey
were put in. Informationis storedin the Tube until removedby the receiving processorthus allowing
completelyasynchronousperationof the two systems. messageand dataare passedo andfro through
the variousregistersaccordingto carefully designedsoftware protocols, and proper allocation of the
registers to specific tasks allows both systems to operate with the minimum waiting time.

Support Group Application Note No. 004sue 1 13

Support Group Application Note No. 004sue 1

16th June 1992

Register Organisation

A2 Al A0 R/WorNWDS D7 Host DO

0 0 0 1 Al FIPVMJIQ

0 0 1 1 read reg 1

0 1 0 1 A2 F2 X X X X X X

0 1 1 1 read reg 2

1 0 0 1 A3 F3 XXX XXX

1 0 1 1 read reg 3 (2)
1 1 0 1 A4 F4 XXX XXX

1 1 1 1 read reg 4 4)
0 0 0 0 S TPVMKIQ

0 0 1 0 writeregl (6)
0 1 0 0 X XX XX XXX

0 1 1 0 write reg 2

1 0 0 0 X XX XX XXX

1 0 1 0 writereg3 (7)
1 1 0 0 X XXXXXXX

1 1 1 0 writereg4 (9)
Notes: 1) Will clear PIRQ if register 1 was the source

2) May activate PNMI depending on M and V flags

D7

Al

A2

N

A4

3) May clear PNMI (see description of interrupt operation)

4) Will clear HIRQ if it was active
5) Will clear PIRQ if register 4 was the source
6) Will activate PIRQ if I =1

7) May activate PNMI depending on M and V flags

8) May clear PNMI
9) Will activate PIRQ isJ =1
10) Will activate HIRQ ifQ =1

11) All bits marked x are insignificant and will read out as 1

Parasite DO

FIPVMJIQ
read reg 1 (2)
F2XXXXXX
read reg 2
F3XXXXXX
read reg 3 3)
FA XXXXXX

read reg 4 (5)

XXX X XXX
write reg 1
X XXXXXXX
write reg 2
X XXXXXXX
write reg 3
XXX X XXX
write reg 4 (20)

Support Group Application Note No. 004sue 1

14

Support Group Application Note No. 004sue 1 16th June 1992

TUBE Logical Definition

VCCI VCC2 CND
HAO e, < PAO
HALl — PA1
HA2 — PA2
HCS — ¢ 0+« PCS
HOST (1/0) HDO o, «—, PDO PARASITE (2nd)
processor system PE— pamm— processor system
HD7 T pumm— oY
HO2 o<«— PNRDS
HRIW e, O<— PNWDS
G PRST
ARST—o O— PNMT
HTR—G—O (6 pl—R—Q
DRQ DACR
DMA controller on 2nd processor system
Description of pins:
Power supply GND Ov reference
VCC1 Main +5v supply
VCC2 Secondary supply - may not be used. - must be derived from
+5v through dropping resistor.
Data buses HDo-7 8 bit data bus to host processor
PDO-7 parasite processor
Address signals HAo0-2/PAo0-2 3 register select lines from host/parasite address
bus
HCS/PCS chip select line from host/parasite address
decoding
Timing signals HO2 Host processor clock-high level signifies valid address bus
HR/W Host read-write line-controls direction of information flow on
HDo-7
PNRDS Parasite read strobe (low level active)
PNWDS Parasite write strobe (low level active)
Interrupt lines HRST Clears all internal latches and initialises tube to known state -
also generates PRST
HIRQ Interrupt to host processor
PRST Reset line to parasite processor
PNMI Non-maskable interrupt to parasite
PIRQ Interrupt to parasite

Support Group Application Note No. 004sue 1 15

Support Group Application Note No. 004sue 1

16th June 1992

DMA lines

DRQ
DACK

Request for DMA transfer
DMA acknowledge from DMA controller

Schematic diagram of Tuberegisters

Writeaddress0
Read address0

Read address0
Writeaddress 1

Read address 2
Writeaddress 3

Read address 4
Writeaddress5

Read address 6
Writeaddress 7

HOST

Read address0
Read address 1

Read address 2
Read address 3

Read address 4
Read address 5

Read address 6
Read address 7

STATUSREGISTER
__________ — 1 Flags
- e e e e e e - e bytem T T T T T T T === =
REGISTER 1
Not full Data available
R I e | 1 ——————————— —
byte
REGISTER 2
Not full Data available
e e e [e e e —
byte
REGISTER 3
Not full Action required
= mm mm o mm mm o Em omm om0 m omm mm omm omm mw mm omm o —
2 hyte
Fl Iélé)
REGISTER 4
Not full Data available
G = Em o Em E= E— = == == - 1 ——————————— —
byte
REGISTER 1
Data available Not full
- =s=====7 24byteFIFO [= == === = -
REGISTER 2
Data available Not full
R I e | 1 ——————————— —
byte
REGISTER 3
Data available Not full
= e Em e o e o o o Em L Em mm mm Em Em mm Em Em o —
2 byte
ERO
REGISTER 4
Data available Not full
G o Em o Em Em = = = = - 1 ——————————— —
byte

The following tablesshowthe relative addressand type of eachregisterin the Tube,firstly for the Host

Read address 0

Read address0
Read address 1

Read address 2
Read address 3

Read address 4
Read address 5

Read address 6
Read address 7

PARASITE

Read address0
Writeaddress 1

Read address 2
Write address 3

Read address 4
Writeaddress5

Read address 6
Writeaddress 7

system, and secondly for the parasite system (second processor).

Table 1 Host System Registers

Address

000
001
010
011
100
101
110
111

Read

Status flags and Register 1 flags
Register 1 (24 byte FIFO read only)
Register 2 flags

Register 2 (1 byte read only)
Register 3 flags

Register 3 (2 byte FIFO only)
Register 4 flags

Register 4 (1byte read only)

Support Group Application Note No. 004sue 1

Support Group Application Note No. 004sue 1 16th June 1992

Address Write

000 Status flags

001 Register 1 (1 byte write only)

oo e

011 Register 2 (1 byte write only)

00 ------

101 Register 3 (2 byte FIFO write only)
10 e

111 Register 4 (1 byte write only)

Table 2 Parasite System Registers

Address Read

000 Status flags and Register 1 flags AIF1PV MJIQ
001 Register 1 (1 byte read only)

010 Register 2 flags

011 Register 2 (1 byte read only)

100 Register 3 flags

101 Register 3 (2 byte FIFO read only)
110 Register 4 flags

111 Register 4 (1 byte read only)
Address Write

oo a-----

001 Register 1 (24 byte FIFO write only)
oo e

011 Register 2 (1 byte write only)

00 ------

101 Register 3 (2 byte FIFO write only)
110 ------

111 Register 4 (1 byte write only)

Support Group Application Note No. 004sue 1 17

Support Group Application Note No. 004sue 1 16th June 1992

INTERFACE SPECIFICATION

Title: Acorn Tube Softwar e Protocol Specification

Reference: SPO, 989, 900101

Issue No: 08

Author:

Date: 27. 05. 1986

Design Authority:

NOTE: All enquiries and requests for changes to this specification must be directed to the Design
Authority.
DISTRIBUTION: ACORN H Fisher Business Systems Dept

EXTERNAL

A Hinchley Communication Systems Dept
J B Tansley Engineering Systems Dept

M Jenkin Engineering Systems Dept

A McKernan Personal Systems Dept

C B Turner R & D Services Dept

F Cockshott Glasgow Univ.
C Hall TDI
J Wein Digital Research

(C) Copyright Acorn Computers Limited 1986

Interface Specification

Ref: SOtube8

Support Group Application Note No. 004sue 1 18

Support Group Application Note No. 004sue 1 16th June 1992

1 ChangeHistory

31 Jan 1984 : Initial issue

9 Feb 1984 : Correct R4 protocols, Minor clarifications
24 Feb 1984 : Correct R4 type 0-3 protocols

6 Aug 1984 : OSWORD Parameter Counts corrected
12 Oct 1984 : Document restructure

25 Oct 1984 : Distribution List change

20 Nov 1984 : Correction of typographical errors

27 May 1986 : Addition of overview and timing details

2 Introduction

The Tube allows two processor$o communicatausing softwareprotocols,it providessingle or multibyte
buffering and the handshake signals required.

This documentdescribesthe Tube protocolsfrom the point of view of the secondprocessor. In this
document the following conventions are observed:

Hexadecimal numbers are preceded by &

When bit are numbered within a byte, bit O is the least significant bit
'Host' refers to the BBC computer

'Parasite’ refers to the second processor

3 Overview

The objectiveof a host- parasitetube configurationis to allow th parasiteto executeuserprogramsusing
the hostsystemasa servanto takecareof low level I/O tasks. In orderto usethe hostsystemasa servant,
the parasitemustbe ableto control suitableroutinesin the hostsystem. The standarchost tubecodeallows
the parasiteto make use of the standardBBC operatingsystem calls. Thus any parasitesystem,on

initialisation, must be capableof usingthesestandardOS routinesthroughthe tube,and may or may not
load new routinesinto the hostat a later stageof startup. This documentthereforedefinesthe protocols
necessaryor makinguseof thesestandardOS routinesand copingwith the resultsof issuingcommands

for exampleloadingfiles from discacrosghetubeinto the parasitesystem. a parasitesystemalsohasto be
able to copewith the needsof externalsystemssuchas a network - which may want to peekor poke
memory in the parasite system.

The system calls form three main categories:

a) Calls on which the host system acts and makes no return of information to the parasite.

b) Calls on which the hostactsand thenreturnsa few parametergo the parasitein a non time critical
fashion.

c) Calls on which the host acts and then returnsor readsparametersor blocks of datain time critical
fashions.

An exampleof categoryc is aload of a file from disc. The processs startedby the parasiteissuingan
appropriatdiling systemcall. Thefiling systemresponsewill resultin bytesphysicallyreadfrom the disc
having to be passed straight across the tube to the parasite.

Categoriesa andb are dealtwith by th hostand parasiteusing registersl in the parasiteto hostdirection
and 2 in both directions. registerl in the parasiteto hostdirectionis usedfor OSWRCH calls (fitting

Support Group Application Note No. 004sue 1 19

Support Group Application Note No. 004sue 1 16th June 1992

categorya). Thesetypesof transferare madeby eachprocessopolling the relevantregisterstatusuntil it
reacheghe correctstatefor readingor writing. Whenit is not busy performingtasks,the hostprocessor
polls registersR1ISTAT and R2STAT, waiting for commands. Filing systemcalls (categoryc) are made
with this type of transferthroughregister2, but any time critical resultingtransferoccursunderinterrupt.
The 'Non Interrupt Protocols'sectionof this documentdescribesn detail the protocolsfor thesetypesof
transfer,

Time critical transfersuseregistersl or 4 in the hostto parasitedirectionto generatdRQ'sin the parasite
andreadingor writing of register3 by the hostto generatdNMI's in the parasite. The tubedoesnot cause
interruptsin the hostsystemnor doesthe hostsystempoll tuberegistersduringtime critical block transfers
suchasfile loading/saving. During time critical block transfers the host processosimply readsfrom or

writes to registerR3DATA at definedrates. Eachreador write generatesan NMI in the parasitesystem,
andthe parasitemustservicethis interruptappropriatelyin time for the nextinterrupt. Sometransfersalso
occur without NMI's through register 3. The 'Interrupt Driven Operations"section of this document
describes in detail the protocols for these types of transfer.

4 Hardware Structure

The Tube hardwareprovides4 independenbi-directionalcommunication paths.Eachconsistsof a one
byte controlregisteranda onebyte dataregister(which may havemultibyte buffering). The characteristics
of eachregisterset aredescribedbelow, in the descriptionsRNnSTAT refersto statusregistern and
RNDATA refers to its corresponding data register.

4.1 Register set 1

R1DATA
write
read (reading clears IRQ)

R1STAT
bit 7 data available/IRQ
bit 6 not full

In the parasiteto hostdirection thisregistersetis usedfor the OSWRCHoperatingsystemcall. The data
registeris a FIFO big enoughto enablethe longesvDU commando residewithin it - thusincreasinghe
chance that the host and parasite will achieve parallel execution.

In the hostto parasitedirectionthe dataregisterprovidesa 1 byte buffer. Whenthe hostwritesto it anIRQ
is generatedo the parasite. It is usedto passon eventinterrupts,suchas a keypressinterrupt, and the
escape operation.

4.2 Register set 2

R2DATA
write
read

R2STAT
bit 7 data available

bit 6 not full
Support Group Application Note No. 004sue 1 20

Support Group Application Note No. 004sue 1 16th June 1992

This registersetis usedto implementlong (in machinetime used)OS calls, or thosewhich (eg RDCH)
cannotinterruptthe WRCH hostbackgroundask - in fact, any call apartfrom OSWRCH. The parasite
passes byte to describethe requiredaction. The twomachinesthen co-operatan passingdataacross
R2DATA until the job is done.

4.3 Register set 3

R3DATA
write
read

R3STAT
bit 7 data available/nmi
bit 6 not full

R3DATA is programmabléfrom the Host) to be eithera 1 or 2 byte FIFO. If setasa 2 byte FIFO, both
byteshaveto be written to orreadfrom to causeor cleara parasiteNMI. register3 canbe programmedy
the host not to cause parasite NMI's.

This registersetis usedfro the backgroundtask of block data transferbetweenthe two machines(of
register set 4). For higher performanceapplicationsthis register may actually interfaceto a DMA
controller.

4.4 Register set 4

R4DATA
write (writing sets IRQ)
read (reading clears IRQ)

RASTAT
bit 7 data available/IRQ
bit 6 not full/IRQ

This registersetis usedasa control channeffor block transferscarriedout acrossR3. The hostinterrupts
the secondprocessoty writing a byte describingthe requiredactioninto R4DATA. The twomachines
then co-operaten passingdataacrossregister4 until removalof a synchronisatiorbyte by the parasite
signals starting of transfers through register 3.

Theregistersetis alsousedto initiate the passingof an errorstring from hostto parasite.the hostinterrupts
the parasiteby writing an errorcodeinto R4DATA, the two machineshencooperatan passingthe error
string across R2DATA.

5 Software Protocols

Notes:

The BBC machine operates by polling the tube register for work.

In all the transactionsvhich may generateerrorsit is importantto realistthatif the erroris reportedby the
BBC machineunderinterrupt(ie it wasgeneratedy a 6502BRK sequence)he protocolwhich generated
the error is abandoned.

Support Group Application Note No. 004sue 1 21

Support Group Application Note No. 004sue 1 16th June 1992

5.1 Non Interrupt Protocols
OSWRCH - Wait until R1IDATA not full, write character into R1DATA.

OSRDCH - Wait until R2DATA not full, write RDCHNO (=&00) to R2DATA.
Wait for data in R2DATA, top bit of R2DATA is 6502 C@bit (validity bit).
Wait for data in R2DATA, R2DATA is 6502 A register (character read).

OSCLI - Wait until R2DATA not full, write CLINO (=&02) to R2DATA.
FOR all characters in the command string (including terminating <cr>)
DO [
Wait until R2DATA not full, write character to R2DATA

]
Wait for data in R2DATA and read it.

IF this byte =&80 thencodehasbeenloadedinto the secondorocessostoreasa resultof the commandand
it should be entered at the address given by the last R4 protocol type 4 address.

OSBYTE - IF oshyteno , &80
THEN [
Wait until R2DATA not full, write SBYTNo (=&04) to R2DATA
Wait until R2DATA not full, write parameter for 6502@X to R2DATA
Wait until R2DATA not full, write osbyteno to R2DATA
Wait for data in R2DATA, read R2DATA which is 6502@X register

]

ELSEIF osbyteno = &82 THEN [result is machine high order address |
ELSEIF osbyteno = &83 THEN [result is low memory value]
ELSEIF osbyteno = &84 THEN [result is high memory value]
ELSE [
Wait until R2DATA not full, write BYTENO (=&06) to R2DATA
Wait until R2DATA not full, write parameter for 6502@X to R2DATA
Wait until R2DATA not full, write parameter for 6502@Y to R2DATA
Wait until R2DATA not full, write osbyteno to R2DATA
IF osbyteno=&9D THEN RETURN from protocol (no reply)
Wait for data in R2DATA, bit 7 of byte read is from 6502@C
Wait for data in R2DATA, byte read is 6502@Y
Wait for data in R2DATA, byte read is 6502@X

]

OSWORD - IF oswordno = &00
THEN [; Doing readline

Wait until R2DATA not full, write RDLNNO (=&0A) to R2DATA
Wait until R2DATA not full, write upper bound char to R2DATA
Wait until R2DATA not full, write lower bound char to R2DATA
Wait until R2DATA not full, write length allowed to R2DATA
Wait until R2DATA not full, write &07 to R2DATA
Wait until R2DATA not full, write &00 to R2DATA
Wait for data in register2 -> response
IF response .&7F
THEN [

Support Group Application Note No. 004sue 1 22

Support Group Application Note No. 004sue 1 16th June 1992

; escape was pressed on input
RETURN from protocol
]

Read a <cr> terminated string from R2DATA
]

ELSE [

Wait until R2DATA not full, write WORDNO (=&08) to R2DATA

Wait until R2DATA not full, write oswordno to R2DATA

Wait until R2DATA not full, write #params to send to R2DATA

Write parameter block to R2DATA, last byte first

Wait until R2DATA not full, write #params to recv to R2DATA
Read bytes back from R2DATA into parameter block, last byte first

]

The number of parameters to send/receive is determined by:
IF oswordno<&14

THEN [Determine number of parameters from following tables
OSWORD number Parameters to send Parameters to receive

1 0 5

2 5 0

3 0 5

4 5 0

5 2 5

6 5 0

7 8 0

8 14 0

9 4 5
10 1 9
11 1 5
12 5 0
13 0 8
14 16 16
15 16 16
16 16 13
17 13 13
18 0 128
19 8 8
20 128 128

]
ELSEIF oswordno <&80

THEN |
parameters to send=16
parameters to receive=16

]
ELSE [

parameters determined in call specific manner
(eg by embedding in transfer block)

]

Support Group Application Note No. 004sue 1 23

Support Group Application Note No. 004sue 1 16th June 1992

OSBPUT - Wait until R2DATA not full, write BPUTNO (=&10) to R2DATA
Wait until R2DATA not full, Y to R2DATA (file handle)
Wait until R2DATA not full, A to R2DATA (byte to write)
Wait for data from R2DATA, discard it

OSBGET - Wait until R2DATA not full, write BGETNO (=&0E) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Wait for data in R2DATA, top bit of byte is 6502@C (validity bit)
Wait for data in R2DATA, read R2DATA which is byte read from file

OSFIND - Wait until R2DATA not full, write FINDNO (=&12) to R2DATA
Wait until R2DATA not full, write type of open to R2DATA
IF type=0
THEN [
Wait until R2DATA not full, write file handle to R2DATA
Wait for data in R2DATA, read result
]
ELSE [
Wait until R2DATA not full, write file name string to R2DATA
(including terminating <cr>)
Wait for data in R2DATA, read handle from R2DATA
]

OSARGS - Wait until R2DATA not full, write ARGSNO (=&0C) to R2DATA
Wait until R2DATA not full, write file handle to R2DATA
Waiting for R2DATA not full,
[write 4 bytes orsarg@data to R2DATA (ms byte first)]
Wait until R2DATA not full, write operation code to R2DATA
Wait for data in R2DATA, read fs type from R2DATA
Waiting for R2DATA data,
[read 4 bytes osarg@data from R2DATA (ms byte first)]

Note: osarg@data is the file sequential pointer or length depending on the type of OSARG call.

OSFILE - Wait until R2DATA not full, write FILENO (=&14) to R2DATA
Waiting for R2DATA not full,
[write 16 byte OSFILE control block to R2DATA |
(last byte of block is written first)
Waiting for R2DATA not full, write flename to R2DATA including terminating <cr>
Wait until R2DATA not full, write type of transfer to R2DATA
(Any transfer is completed under interrupt using R3, R4)
Wait for data in R2DATA, read R2DATA AND &7F = filing system type
Waiting for data in R2DATA,
[read back 16 byte control block from R2DATA |
(last byte of block is read first)

Note: The 16 byte control block has format:

Support Group Application Note No. 004sue 1 24

Support Group Application Note No. 004sue 1 16th June 1992

e
0 | L oad address
L
4 : Execution address
T
8 | Data start addressor Length *
L
12 End address or attributes *

* The contents of these fields depends on the call type

OSGBPB - Wait until R2DATA not full, write GBPBNO (=&16) to R2DATA
Wait until R2DATA not full,
[write 13 byte OSGBPB control block to R2DATA]
(last byte of block is written first)
Wait until R2DATA not full, write type of transfer to R2DATA
Waiting for data in R2DATA
[read back 13 byte control block from R2DATA |
(last byte of clock is read first)
Wait for data in R2DATA, read R2DATA bit 7 is 6502@C bit
Waiting for data in R2DATA, read 6502@A from R2DATA

5.2 Interrupt driven operations

In additionto theseparasiteinitiated activities the parasiteis also requiredto respondto interruptsfrom
registers 1, 3 and 4.

To determine the source of an interrupt it is important to follow the following order:

1. check for register 4 interrupt
2. check for register 1 interrupt

Register 1 interrupts:
Register 1 interrupts occur only in the host to parasite direction. The interrupt service sequence is:

Read type byte from R1DATA IF type <0 THEN

[; escape flag update
Replace the escape flag with bit 6 of type
RETURN from servicing interrupt

] ELSE

[; Event signal
Interrupt@R1@read 6502@Y event parameter

Interrupt@R1@read 6502@X event parameter

Interrupt@R1@read 6502@A event parameter

; BBC machine will now continue processing

Support Group Application Note No. 004sue 1 25

Support Group Application Note No. 004sue 1

16th June 1992

; any other actions to service event can be taken

]

Where Interrupt@R1@read is:
UNTIL data@ready@in@R1
DO |
IF data@ready@in@R4 THEN CALL R4@interrupt@service

]
RETURN read R1IDATA

Register 4 Interrupts:

Read type byte from R4DATA IF type<0
THEN [; BBC machine is reporting an error
Wait for data in R2DATA, read and discard it
Wait for data in R2DATA, read error number form R2DATA
Read a zero byte terminated string from R2DATA
]
ELSE
[; Type is a command to initialise for register 3 block transfer
Wait for data in register 4, read Claimer@identity* from R4DATA

* For details of the identity numbers see Appendix A

CASE type OF
[
0 : ; Single byte transfer parasite to host.
Read 4 byte base address for transfer from R4DATA msb first
Set NMI routine for this transfer type
Wait for and remove synchronising byte from R4DATA

1 : ; Single byte transfer host to parasite
Read 4 byte base address for transfer from R4DATA msb first
Set NMI routine for this transfer type
Wait for and remove synchronising byte from R4DATA

2 : ; Double byte transfer parasite to host
Read 4 byte base address for transfer from R4DATA msb first
Set NMI routine for this transfer type
Wait for and remove synchronising byte from R4DATA

3 : ; Double byte transfer host to parasite
Read 4 byte base address for transfer from R4DATA msb first
Set NMI routine for this transfer type
' Wait for and remove synchronising byte from R4DATA

4 : ; No transfer (pass address host to parasite only)
Read 4 byte address from R4DATA msb first
Wait for data in R4DATA, discard it

Support Group Application Note No. 004sue 1

26

Support Group Application Note No. 004sue 1 16th June 1992

5 : ; No transfer (filing system release)

6 : ; 256 type transfer parasite to host without interrupt
Read 4 byte base address for transfer from R4DATA msb first
Wait for data in Register 4, discard it
Transfer 256 bytes to host, via R3DATA
Write a byte into R4DATA,; To stop unwanted ints on host

7 : ; 256 byte transfer host to parasite without interrupt
Read 4 byte base address for transfer from R4DATA msb first
Wait for data in Register 4, discard it
Transfer 256 bytes from host via R3DATA

]
RETURN ; From the interrupt

Notes:

Fortypes0-3: As soonasthe synchronisingoyteis removeregister3 transferrequest§NMI's) will startto
occur. When the interrupt occurs 1 or 2 bytes are transferred (depending on the current mode).

A release (type 5) is a guarantee that no more register 3 NMI's will occur for the current transfer.

Register 3 Transfer Timings

During suchan operationasloadinga file into the parasitesystemfrom disc, datahasto be rapidly passed
throughthetubeatinstants dictatetly a physicalprocess in this case readingfrom a disc. for this reason
suchtransfersare madevia register3, which may be programmedo causeparasiteNMI's. Becausdhese
NMI's occurvery rapidly, thereareconstrainton the timings with which the parasitemustrespondo such
NMI's.

After the parasiteprocessohasreadthe synchronisatiobyte from register4, the hostprocessor willwait
for at leastthe length of the initial delaybelow (zerofor hostto parasitedirection) beforetransferringthe
first byte of data. Thusfor transfersin the parasiteto hostdirection, this initial delayis the time within
which the parasitemust place the fist byte (or pair of bytes) of datain register3 after removing the
synchronisingbyte. For NMI transfersin the hostto parasitedirection, this delayis zero - the parasite
processomustbe readyto copewith register3 NMI's assoonasit hasremoved the synchronisation byte
from register4. Fortype 7 transfer,notusingNMi's the hostwill write thefirst byte without delay,but the
parasitecannotreceivea byteimmediatelyfrom R3DATA asit hasto testthe dataavailablebit in R3STAT.
The parasitenasto readthisfirst bytein R3DATA beforeit is overwrittenby the next hostwvrite. Assuming
the host code is as below, this allows 15.5 uS to read the first byte:

JSR &406 ; Initialise tube -routine returning when parasite reads
; synchronising byte
LDY 0 ; LuS
Joop LDA (host), Y ; 2.5uS
STA TPORT ; 2UuS
NOP ; LuS
NOP ; LuS
NOP ; LuS
INY ; LuS

Support Group Application Note No. 004sue 1 27

Support Group Application Note No. 004sue 1 16th June 1992

BNE loop ; 1.5uS
1+25+2+1+1+1+1+15+25+2=155)

The servicetime is the maximumtime that the parasitehasto processeachsubsequentransfer. The host
codeis a simpleloop readingor writing data,andsothe parasitemustbe capableof inputting or outputting
datafast enoughfor this loop. For transfersof type 1 to 3, the hostwriting to or readingfrom register3 a
byte (or pair of bytes)causeanNMI in the parasite.thustheservicetime is anupperbound ortheallowed
time for te NMI serviceroutine. Similarly, for type 6 and7 transfersthe servicetime is the maximumtime
for the parasite to transfer each byte to or from R3DATA.

Transfer type Transfer direction Initial delay Service time
0 PtoH 24 uS 24 uS
1 HtoP OuS 24 uS
2 PtoH 26 uS 26 uS/pair
3 Hto P 0 uS 25 uS/pair
6 PtoH 19 uS 10 uS
7 HtoP OuS 10 uS

6 Startup Protocol
The Startup sequence for the second processor is:

Use the OSWRCH mechanism to write out a startup message

Send a zero byte to host via R1DATA to terminate it

Wait for data in R2DATA

; during this wait a load may occur from the host

; using R4/R3 block transfer protocols

IF data=&80 THEN execute from the address given in the R4 type 4 transfer

APPENDIX A: Filing System Claimer Identities

Whenafiling systemclaimsthe R3/R4resourcdn the hostits identity is passedo the secondorocessoas
part of te R4 startup protocol. The identity codes are not related to filing system numbers.

Filing System Claim Identity Used
Tape 0
DFS 1
NFS 2
NFS 3
ADFS 4

Support Group Application Note No. 004sue 1 28

Support Group Application Note No. 004sue 1 16th June 1992

Support Group Application Note No. 004sue 1 29

