Skip to navigation


Version analysis of STARS1

This code appears in the following versions (click to see it in the source code):

Code variations between these versions are shown below.

Name: STARS1 Type: Subroutine Category: Stardust Summary: Process the stardust for the front view Deep dive: Stardust in the front view
This moves the stardust towards us according to our speed (so the dust rushes past us), and applies our current pitch and roll to each particle of dust, so the stardust moves correctly when we steer our ship. When a stardust particle rushes past us and falls off the side of the screen, its memory is recycled as a new particle that's positioned randomly on-screen. These are the calculations referred to in the commentary: 1. q = 64 * speed / z_hi 2. z = z - speed * 64 3. y = y + |y_hi| * q 4. x = x + |x_hi| * q 5. y = y + alpha * x / 256 6. x = x - alpha * y / 256 7. x = x + 2 * (beta * y / 256) ^ 2 8. y = y - beta * 256 For more information see the associated deep dive.
.STARS1

Code variation 1 of 2Related to the Electron version

The Electron version has no witchspace, so the number of stardust particles shown is always the same, so the value is hard-coded rather than needing to use a location (which the other versions need so they can vary the number of particles when in witchspace).

Tap on a block to expand it, and tap it again to revert.

LDY NOSTM \ Set Y to the current number of stardust particles, so \ we can use it as a counter through all the stardust
LDY #NOST \ Set Y to the number of stardust particles, so we can \ use it as a counter through all the stardust
                        \ In the following, we're going to refer to the 16-bit
                        \ space coordinates of the current particle of stardust
                        \ (i.e. the Y-th particle) like this:
                        \
                        \   x = (x_hi x_lo)
                        \   y = (y_hi y_lo)
                        \   z = (z_hi z_lo)
                        \
                        \ These values are stored in (SX+Y SXL+Y), (SY+Y SYL+Y)
                        \ and (SZ+Y SZL+Y) respectively

.STL1

 JSR DV42               \ Call DV42 to set the following:
                        \
                        \   (P R) = 256 * DELTA / z_hi
                        \         = 256 * speed / z_hi
                        \
                        \ The maximum value returned is P = 2 and R = 128 (see
                        \ DV42 for an explanation)

 LDA R                  \ Set A = R, so now:
                        \
                        \   (P A) = 256 * speed / z_hi

 LSR P                  \ Rotate (P A) right by 2 places, which sets P = 0 (as P
 ROR A                  \ has a maximum value of 2) and leaves:
 LSR P                  \
 ROR A                  \   A = 64 * speed / z_hi

 ORA #1                 \ Make sure A is at least 1, and store it in Q, so we
 STA Q                  \ now have result 1 above:
                        \
                        \   Q = 64 * speed / z_hi

 LDA SZL,Y              \ We now calculate the following:
 SBC DELT4              \
 STA SZL,Y              \  (z_hi z_lo) = (z_hi z_lo) - DELT4(1 0)
                        \
                        \ starting with the low bytes

 LDA SZ,Y               \ And then we do the high bytes
 STA ZZ                 \
 SBC DELT4+1            \ We also set ZZ to the original value of z_hi, which we
 STA SZ,Y               \ use below to remove the existing particle
                        \
                        \ So now we have result 2 above:
                        \
                        \   z = z - DELT4(1 0)
                        \     = z - speed * 64

 JSR MLU1               \ Call MLU1 to set:
                        \
                        \   Y1 = y_hi
                        \
                        \   (A P) = |y_hi| * Q
                        \
                        \ So Y1 contains the original value of y_hi, which we
                        \ use below to remove the existing particle

                        \ We now calculate:
                        \
                        \   (S R) = YY(1 0) = (A P) + y

 STA YY+1               \ First we do the low bytes with:
 LDA P                  \
 ADC SYL,Y              \   YY+1 = A
 STA YY                 \   R = YY = P + y_lo
 STA R                  \
                        \ so we get this:
                        \
                        \   (? R) = YY(1 0) = (A P) + y_lo

 LDA Y1                 \ And then we do the high bytes with:
 ADC YY+1               \
 STA YY+1               \   S = YY+1 = y_hi + YY+1
 STA S                  \
                        \ so we get our result:
                        \
                        \   (S R) = YY(1 0) = (A P) + (y_hi y_lo)
                        \                   = |y_hi| * Q + y
                        \
                        \ which is result 3 above, and (S R) is set to the new
                        \ value of y

 LDA SX,Y               \ Set X1 = A = x_hi
 STA X1                 \
                        \ So X1 contains the original value of x_hi, which we
                        \ use below to remove the existing particle

 JSR MLU2               \ Set (A P) = |x_hi| * Q

                        \ We now calculate:
                        \
                        \   XX(1 0) = (A P) + x

 STA XX+1               \ First we do the low bytes:
 LDA P                  \
 ADC SXL,Y              \   XX(1 0) = (A P) + x_lo
 STA XX

 LDA X1                 \ And then we do the high bytes:
 ADC XX+1               \
 STA XX+1               \   XX(1 0) = XX(1 0) + (x_hi 0)
                        \
                        \ so we get our result:
                        \
                        \   XX(1 0) = (A P) + x
                        \           = |x_hi| * Q + x
                        \
                        \ which is result 4 above, and we also have:
                        \
                        \   A = XX+1 = (|x_hi| * Q + x) / 256
                        \
                        \ i.e. A is the new value of x, divided by 256

 EOR ALP2+1             \ EOR with the flipped sign of the roll angle alpha, so
                        \ A has the opposite sign to the flipped roll angle
                        \ alpha, i.e. it gets the same sign as alpha

 JSR MLS1               \ Call MLS1 to calculate:
                        \
                        \   (A P) = A * ALP1
                        \         = (x / 256) * alpha

 JSR ADD                \ Call ADD to calculate:
                        \
                        \   (A X) = (A P) + (S R)
                        \         = (x / 256) * alpha + y
                        \         = y + alpha * x / 256

 STA YY+1               \ Set YY(1 0) = (A X) to give:
 STX YY                 \
                        \   YY(1 0) = y + alpha * x / 256
                        \
                        \ which is result 5 above, and we also have:
                        \
                        \   A = YY+1 = y + alpha * x / 256
                        \
                        \ i.e. A is the new value of y, divided by 256

 EOR ALP2               \ EOR A with the correct sign of the roll angle alpha,
                        \ so A has the opposite sign to the roll angle alpha

 JSR MLS2               \ Call MLS2 to calculate:
                        \
                        \   (S R) = XX(1 0)
                        \         = x
                        \
                        \   (A P) = A * ALP1
                        \         = -y / 256 * alpha

 JSR ADD                \ Call ADD to calculate:
                        \
                        \   (A X) = (A P) + (S R)
                        \         = -y / 256 * alpha + x

 STA XX+1               \ Set XX(1 0) = (A X), which gives us result 6 above:
 STX XX                 \
                        \   x = x - alpha * y / 256

 LDX BET1               \ Fetch the pitch magnitude into X

 LDA YY+1               \ Set A to y_hi and set it to the flipped sign of beta
 EOR BET2+1

 JSR MULTS-2            \ Call MULTS-2 to calculate:
                        \
                        \   (A P) = X * A
                        \         = -beta * y_hi

 STA Q                  \ Store the high byte of the result in Q, so:
                        \
                        \   Q = -beta * y_hi / 256

 JSR MUT2               \ Call MUT2 to calculate:
                        \
                        \   (S R) = XX(1 0) = x
                        \
                        \   (A P) = Q * A
                        \         = (-beta * y_hi / 256) * (-beta * y_hi / 256)
                        \         = (beta * y / 256) ^ 2

 ASL P                  \ Double (A P), store the top byte in A and set the C
 ROL A                  \ flag to bit 7 of the original A, so this does:
 STA T                  \
                        \   (T P) = (A P) << 1
                        \         = 2 * (beta * y / 256) ^ 2

 LDA #0                 \ Set bit 7 in A to the sign bit from the A in the
 ROR A                  \ calculation above and apply it to T, so we now have:
 ORA T                  \
                        \   (A P) = (A P) * 2
                        \         = 2 * (beta * y / 256) ^ 2
                        \
                        \ with the doubling retaining the sign of (A P)

 JSR ADD                \ Call ADD to calculate:
                        \
                        \   (A X) = (A P) + (S R)
                        \         = 2 * (beta * y / 256) ^ 2 + x

 STA XX+1               \ Store the high byte A in XX+1

 TXA                    \ Store the low byte X in x_lo
 STA SXL,Y

                        \ So (XX+1 x_lo) now contains:
                        \
                        \   x = x + 2 * (beta * y / 256) ^ 2
                        \
                        \ which is result 7 above

Code variation 2 of 2A variation in the comments only

Tap on a block to expand it, and tap it again to revert.

LDA YY \ Set (S R) = YY(1 0) = y STA R \ LDA YY+1 \ The call to MAD and the two store instructions are \JSR MAD \ commented out in the original source \STA S \STX R STA S
LDA YY \ Set (S R) = YY(1 0) = y STA R LDA YY+1 STA S
 LDA #0                 \ Set P = 0
 STA P

 LDA BETA               \ Set A = -beta, so:
 EOR #%10000000         \
                        \   (A P) = (-beta 0)
                        \         = -beta * 256

 JSR PIX1               \ Call PIX1 to calculate the following:
                        \
                        \   (YY+1 y_lo) = (A P) + (S R)
                        \               = -beta * 256 + y
                        \
                        \ i.e. y = y - beta * 256, which is result 8 above
                        \
                        \ PIX1 also draws a particle at (X1, Y1) with distance
                        \ ZZ, which will remove the old stardust particle, as we
                        \ set X1, Y1 and ZZ to the original values for this
                        \ particle during the calculations above

                        \ We now have our newly moved stardust particle at
                        \ x-coordinate (XX+1 x_lo) and y-coordinate (YY+1 y_lo)
                        \ and distance z_hi, so we draw it if it's still on
                        \ screen, otherwise we recycle it as a new bit of
                        \ stardust and draw that

 LDA XX+1               \ Set X1 and x_hi to the high byte of XX in XX+1, so
 STA X1                 \ the new x-coordinate is in (x_hi x_lo) and the high
 STA SX,Y               \ byte is in X1

 AND #%01111111         \ If |x_hi| >= 120 then jump to KILL1 to recycle this
 CMP #120               \ particle, as it's gone off the side of the screen,
 BCS KILL1              \ and rejoin at STC1 with the new particle

 LDA YY+1               \ Set Y1 and y_hi to the high byte of YY in YY+1, so
 STA SY,Y               \ the new x-coordinate is in (y_hi y_lo) and the high
 STA Y1                 \ byte is in Y1

 AND #%01111111         \ If |y_hi| >= 120 then jump to KILL1 to recycle this
 CMP #120               \ particle, as it's gone off the top or bottom of the
 BCS KILL1              \ screen, and rejoin at STC1 with the new particle

 LDA SZ,Y               \ If z_hi < 16 then jump to KILL1 to recycle this
 CMP #16                \ particle, as it's so close that it's effectively gone
 BCC KILL1              \ past us, and rejoin at STC1 with the new particle

 STA ZZ                 \ Set ZZ to the z-coordinate in z_hi

.STC1

 JSR PIXEL2             \ Draw a stardust particle at (X1,Y1) with distance ZZ,
                        \ i.e. draw the newly moved particle at (x_hi, y_hi)
                        \ with distance z_hi

 DEY                    \ Decrement the loop counter to point to the next
                        \ stardust particle

 BEQ P%+5               \ If we have just done the last particle, skip the next
                        \ instruction to return from the subroutine

 JMP STL1               \ We have more stardust to process, so jump back up to
                        \ STL1 for the next particle

 RTS                    \ Return from the subroutine

.KILL1

                        \ Our particle of stardust just flew past us, so let's
                        \ recycle that particle, starting it at a random
                        \ position that isn't too close to the centre point

 JSR DORND              \ Set A and X to random numbers

 ORA #4                 \ Make sure A is at least 4 and store it in Y1 and y_hi,
 STA Y1                 \ so the new particle starts at least 4 pixels above or
 STA SY,Y               \ below the centre of the screen

 JSR DORND              \ Set A and X to random numbers

 ORA #8                 \ Make sure A is at least 8 and store it in X1 and x_hi,
 STA X1                 \ so the new particle starts at least 8 pixels either
 STA SX,Y               \ side of the centre of the screen

 JSR DORND              \ Set A and X to random numbers

 ORA #144               \ Make sure A is at least 144 and store it in ZZ and
 STA SZ,Y               \ z_hi so the new particle starts in the far distance
 STA ZZ

 LDA Y1                 \ Set A to the new value of y_hi. This has no effect as
                        \ STC1 starts with a jump to PIXEL2, which starts with a
                        \ LDA instruction

 JMP STC1               \ Jump up to STC1 to draw this new particle