.ZINF LDY #NI%-1 ; There are NI% bytes in the INWK workspace, so set a ; counter in Y so we can loop through them LDA #0 ; Set A to 0 so we can zero-fill the workspace .ZI1 STA INWK,Y ; Zero the Y-th byte of the INWK workspace DEY ; Decrement the loop counter BPL ZI1 ; Loop back for the next byte, ending when we have ; zero-filled the last byte at INWK, which leaves Y ; with a value of $FF ; Finally, we reset the orientation vectors as follows: ; ; sidev = (1, 0, 0) ; roofv = (0, 1, 0) ; nosev = (0, 0, -1) ; ; 96 * 256 ($6000) represents 1 in the orientation ; vectors, while -96 * 256 ($E000) represents -1. We ; already set the vectors to zero above, so we just ; need to set up the high bytes of the diagonal values ; and we're done. The negative nosev makes the ship ; point towards us, as the z-axis points into the screen LDA #96 ; Set A to represent a 1 (in vector terms) STA INWK+18 ; Set byte #18 = roofv_y_hi = 96 = 1 STA INWK+22 ; Set byte #22 = sidev_x_hi = 96 = 1 ORA #%10000000 ; Flip the sign of A to represent a -1 STA INWK+14 ; Set byte #14 = nosev_z_hi = -96 = -1 RTS ; Return from the subroutineName: ZINF [Show more] Type: Subroutine Category: Universe Summary: Reset the INWK workspace and orientation vectors Deep dive: Orientation vectorsContext: See this subroutine in context in the source code References: This subroutine is called as follows: * BRIEF calls ZINF * DOKEY calls ZINF * FRS1 calls ZINF * KS4 calls ZINF * Main game loop (Part 2 of 6) calls ZINF * SOLAR calls ZINF * Ze calls ZINF
Zero-fill the INWK ship workspace and reset the orientation vectors, with nosev pointing out of the screen, towards us.
Returns: Y Y is set to $FF
[X]
Configuration variable NI% = 37
The number of bytes in each ship's data block (as stored in INWK and K%)
[X]
Label ZI1 is local to this routine