Skip to navigation


Tactics: HITCH

[BBC Micro disc version, Flight]

Name: HITCH [Show more] Type: Subroutine Category: Tactics Summary: Work out if the ship in INWK is in our crosshairs Deep dive: In the crosshairs
Context: See this subroutine in context in the source code Variations: See code variations for this subroutine in the different versions References: This subroutine is called as follows: * Main flight loop (Part 11 of 16) calls HITCH * ANGRY calls via HI1

This is called by the main flight loop to see if we have laser or missile lock on an enemy ship.
Returns: C flag Set if the ship is in our crosshairs, clear if it isn't
Other entry points: HI1 Contains an RTS
.HITCH CLC \ Clear the C flag so we can return with it cleared if \ our checks fail LDA INWK+8 \ Set A = z_sign BNE HI1 \ If A is non-zero then the ship is behind us and can't \ be in our crosshairs, so return from the subroutine \ with the C flag clear (as HI1 contains an RTS) LDA TYPE \ If the ship type has bit 7 set then it is the planet BMI HI1 \ or sun, which we can't target or hit with lasers, so \ return from the subroutine with the C flag clear (as \ HI1 contains an RTS) LDA INWK+31 \ Fetch bit 5 of byte #31 (the exploding flag) and OR AND #%00100000 \ with x_hi and y_hi ORA INWK+1 ORA INWK+4 BNE HI1 \ If this value is non-zero then either the ship is \ exploding (so we can't target it), or the ship is too \ far away from our line of fire to be targeted, so \ return from the subroutine with the C flag clear (as \ HI1 contains an RTS) LDA INWK \ Set A = x_lo JSR SQUA2 \ Set (A P) = A * A = x_lo^2 STA S \ Set (S R) = (A P) = x_lo^2 LDA P STA R LDA INWK+3 \ Set A = y_lo JSR SQUA2 \ Set (A P) = A * A = y_lo^2 TAX \ Store the high byte in X LDA P \ Add the two low bytes, so: ADC R \ STA R \ R = P + R TXA \ Restore the high byte into A and add S to give the ADC S \ following: \ \ (A R) = (S R) + (A P) = x_lo^2 + y_lo^2 BCS TN10 \ If the addition just overflowed then there is no way \ our crosshairs are within the ship's targetable area, \ so return from the subroutine with the C flag clear \ (as TN10 contains a CLC then an RTS) STA S \ Set (S R) = (A P) = x_lo^2 + y_lo^2 LDY #2 \ Fetch the ship's blueprint and set A to the high byte LDA (XX0),Y \ of the targetable area of the ship CMP S \ We now compare the high bytes of the targetable area \ and the calculation in (S R): \ \ * If A >= S then then the C flag will be set \ \ * If A < S then the C flag will be C clear BNE HI1 \ If A <> S we have just set the C flag correctly, so \ return from the subroutine (as HI1 contains an RTS) DEY \ The high bytes were identical, so now we fetch the LDA (XX0),Y \ low byte of the targetable area into A CMP R \ We now compare the low bytes of the targetable area \ and the calculation in (S R): \ \ * If A >= R then the C flag will be set \ \ * If A < R then the C flag will be C clear .HI1 RTS \ Return from the subroutine .TN10 CLC \ Clear the C flag to indicate the ship is not in our \ crosshairs RTS \ Return from the subroutine