.TT26 STA K3 \ Store the A, X and Y registers, so we can restore STY YSAV2 \ them at the end (so they don't get changed by this STX XSAV2 \ routine) LDY QQ17 \ Load the QQ17 flag, which contains the text printing \ flags CPY #255 \ If QQ17 = 255 then printing is disabled, so jump to BEQ RR4 \ RR4, which doesn't print anything, it just restores \ the registers and returns from the subroutine CMP #7 \ If this is a beep character (A = 7), jump to R5, BEQ R5 \ which will emit the beep, restore the registers and \ return from the subroutine CMP #32 \ If this is an ASCII character (A >= 32), jump to RR1 BCS RR1 \ below, which will print the character, restore the \ registers and return from the subroutine CMP #10 \ If this is control code 10 (line feed) then jump to BEQ RRX1 \ RRX1, which will move down a line, restore the \ registers and return from the subroutine LDX #1 \ If we get here, then this is control code 11-13, of STX XC \ which only 13 is used. This code prints a newline, \ which we can achieve by moving the text cursor \ to the start of the line (carriage return) and down \ one line (line feed). These two lines do the first \ bit by setting XC = 1, and we then fall through into \ the line feed routine that's used by control code 10 .RRX1 INC YC \ Print a line feed, simply by incrementing the row \ number (y-coordinate) of the text cursor, which is \ stored in YC BNE RR4 \ Jump to RR4 to restore the registers and return from \ the subroutine (this BNE is effectively a JMP as Y \ will never be zero) .RR1 \ If we get here, then the character to print is an \ ASCII character in the range 32-95. The quickest way \ to display text on-screen is to poke the character \ pixel by pixel, directly into screen memory, so \ that's what the rest of this routine does \ \ The first step, then, is to get hold of the bitmap \ definition for the character we want to draw on the \ screen (i.e. we need the pixel shape of this \ character). The MOS ROM contains bitmap definitions \ of the system's ASCII characters, starting from &C000 \ for space (ASCII 32) and ending with the £ symbol \ (ASCII 126) \ \ There are definitions for 32 characters in each of the \ three pages of MOS memory, as each definition takes up \ 8 bytes (8 rows of 8 pixels) and 32 * 8 = 256 bytes = \ 1 page. So: \ \ ASCII 32-63 are defined in &C000-&C0FF (page 0) \ ASCII 64-95 are defined in &C100-&C1FF (page 1) \ ASCII 96-126 are defined in &C200-&C2F0 (page 2) \ \ The following code reads the relevant character \ bitmap from the above locations in ROM and pokes \ those values into the correct position in screen \ memory, thus printing the character on-screen \ \ It's a long way from 10 PRINT "Hello world!":GOTO 10 TAY \ Copy the character number from A to Y, as we are \ about to pull A apart to work out where this \ character definition lives in memory \ Now we want to set X to point to the relevant page \ number for this character - i.e. &C0, &C1 or &C2. \ The following logic is easier to follow if we look \ at the three character number ranges in binary: \ \ Bit # 76543210 \ \ 32 = %00100000 Page 0 of bitmap definitions \ 63 = %00111111 \ \ 64 = %01000000 Page 1 of bitmap definitions \ 95 = %01011111 \ \ 96 = %01100000 Page 2 of bitmap definitions \ 125 = %01111101 \ \ We'll refer to this below LDX #&BF \ Set X to point to the first font page in ROM minus 1, \ which is &C0 - 1, or &BF ASL A \ If bit 6 of the character is clear (A is 32-63) ASL A \ then skip the following instruction BCC P%+4 LDX #&C1 \ A is 64-126, so set X to point to page &C1 ASL A \ If bit 5 of the character is clear (A is 64-95) BCC P%+3 \ then skip the following instruction INX \ Increment X \ \ By this point, we started with X = &BF, and then \ we did the following: \ \ If A = 32-63: skip then INX so X = &C0 \ If A = 64-95: X = &C1 then skip so X = &C1 \ If A = 96-126: X = &C1 then INX so X = &C2 \ \ In other words, X points to the relevant page. But \ what about the value of A? That gets shifted to the \ left three times during the above code, which \ multiplies the number by 8 but also drops bits 7, 6 \ and 5 in the process. Look at the above binary \ figures and you can see that if we cleared bits 5-7, \ then that would change 32-53 to 0-31... but it would \ do exactly the same to 64-95 and 96-125. And because \ we also multiply this figure by 8, A now points to \ the start of the character's definition within its \ page (because there are 8 bytes per character \ definition) \ \ Or, to put it another way, X contains the high byte \ (the page) of the address of the definition that we \ want, while A contains the low byte (the offset into \ the page) of the address STA P+1 \ Store the address of this character's definition in STX P+2 \ P(2 1) LDA #128 \ Set SC = 128 for use in the calculation below STA SC LDA YC \ If YC < 24 then we are in the top part of the screen, CMP #24 \ so skip the following two instructions BCC P%+8 JSR TTX66 \ We are off the bottom of the screen, so we don't want \ to print anything, so first clear the screen and draw \ a border box JMP RR4 \ Jump to RR4 to restore the registers and return from \ the subroutine \ The text row is on-screen, so now to calculate the \ screen address we need to write to, as follows: \ \ SC = &5800 + (char row * 256) + (char row * 64) + 32 LSR A \ Set (A SC) = (A SC) / 4 ROR SC \ = (4 * ((char row * 64) + 32)) / 4 LSR A \ = char row * 64 + 32 ROR SC ADC YC \ Set SC(1 0) = (A SC) + (YC 0) + &5800 ADC #&58 \ = (char row * 64 + 32) STA SC+1 \ + char row * 256 \ + &5800 \ \ which is what we want, so SC(1 0) contains the address \ of the first visible pixel on the character row we \ want LDA XC \ Fetch XC, the x-coordinate (column) of the text cursor \ into A ASL A \ Multiply A by 8, and add to SC. As each character is ASL A \ 8 pixels wide, this gives us the screen address of the ASL A \ character block where we want to print this character ADC SC STA SC BCC P%+4 \ If the addition of the low byte overflowed, increment INC SC+1 \ the high byte CPY #127 \ If the character number (which is in Y) <> 127, then BNE RR2 \ skip to RR2 to print that character, otherwise this is \ the delete character, so continue on DEC XC \ We want to delete the character to the left of the \ text cursor and move the cursor back one, so let's \ do that by decrementing YC. Note that this doesn't \ have anything to do with the actual deletion below, \ we're just updating the cursor so it's in the right \ position following the deletion DEC SC+1 \ Decrement the high byte of the screen address to point \ to the address of the current character, minus one \ page LDY #&F8 \ Set Y = &F8, so the following call to ZES2 will count \ Y upwards from &F8 to &FF JSR ZES2 \ Call ZES2, which zero-fills from address SC(1 0) + Y \ to SC(1 0) + &FF. SC(1 0) points to the address of the \ current character, minus one page, and adding &FF to \ this would point to the cursor, so adding &F8 points \ to the character before the cursor, which is the one \ we want to delete. So this call zero-fills the \ character to the left of the cursor, which erases it \ from the screen BEQ RR4 \ We are done deleting, so restore the registers and \ return from the subroutine (this BNE is effectively \ a JMP as ZES2 always returns with the Z flag set) .RR2 \ Now to actually print the character INC XC \ Once we print the character, we want to move the text \ cursor to the right, so we do this by incrementing \ XC. Note that this doesn't have anything to do \ with the actual printing below, we're just updating \ the cursor so it's in the right position following \ the print EQUB &2C \ Skip the next instruction by turning it into \ &2C &85 &08, or BIT &0885, which does nothing apart \ from affect the flags. We skip the instruction as we \ already set the value of SC+1 above .RR3 \ A contains the value of YC - the screen row where we \ want to print this character - so now we need to \ convert this into a screen address, so we can poke \ the character data to the right place in screen \ memory .RREN STA SC+1 \ Store the page number of the destination screen \ location in SC+1, so SC now points to the full screen \ location where this character should go LDY #7 \ We want to print the 8 bytes of character data to the \ screen (one byte per row), so set up a counter in Y \ to count these bytes .RRL1 LDA (P+1),Y \ The character definition is at P(2 1) - we set this up \ above - so load the Y-th byte from P(2 1), which will \ contain the bitmap for the Y-th row of the character EOR (SC),Y \ If we EOR this value with the existing screen \ contents, then it's reversible (so reprinting the \ same character in the same place will revert the \ screen to what it looked like before we printed \ anything); this means that printing a white pixel \ onto a white background results in a black pixel, but \ that's a small price to pay for easily erasable text STA (SC),Y \ Store the Y-th byte at the screen address for this \ character location DEY \ Decrement the loop counter BPL RRL1 \ Loop back for the next byte to print to the screen .RR4 LDY YSAV2 \ We're done printing, so restore the values of the LDX XSAV2 \ A, X and Y registers that we saved above and clear LDA K3 \ the C flag, so everything is back to how it was CLC .rT9 RTS \ Return from the subroutine .R5 JSR BEEP \ Call the BEEP subroutine to make a short, high beep JMP RR4 \ Jump to RR4 to restore the registers and return from \ the subroutine using a tail callName: TT26 [Show more] Type: Subroutine Category: Text Summary: Print a character at the text cursor by poking into screen memory Deep dive: Drawing textContext: See this subroutine in context in the source code Variations: See code variations for this subroutine in the different versions References: This subroutine is called as follows: * BPRNT calls TT26 * cmn calls TT26 * gnum calls TT26 * S% (Part 1 of 2) calls TT26 * TT160 calls TT26 * TT161 calls TT26 * TT16a calls TT26 * TT214 calls TT26 * TT25 calls TT26 * TT42 calls TT26 * TT74 calls TT26 * BULB calls via RREN * DIALS (Part 3 of 4) calls via rT9
Print a character at the text cursor (XC, YC), do a beep, print a newline, or delete left (backspace). WRCHV is set to point here by the loading process.
Arguments: A The character to be printed. Can be one of the following: * 7 (beep) * 10-13 (line feeds and carriage returns) * 32-95 (ASCII capital letters, numbers and punctuation) * 127 (delete the character to the left of the text cursor and move the cursor to the left) XC Contains the text column to print at (the x-coordinate) YC Contains the line number to print on (the y-coordinate)
Returns: A A is preserved X X is preserved Y Y is preserved C flag The C flag is cleared
Other entry points: RREN Prints the character definition pointed to by P(2 1) at the screen address pointed to by (A SC). Used by the BULB routine rT9 Contains an RTS
[X]
Subroutine BEEP (category: Sound)
Make a short, high beep
[X]
Label R5 is local to this routine
[X]
Label RR1 is local to this routine
[X]
Label RR2 is local to this routine
[X]
Label RR4 is local to this routine
[X]
Label RRL1 is local to this routine
[X]
Label RRX1 is local to this routine
[X]
Subroutine TTX66 (category: Drawing the screen)
Clear the top part of the screen, draw a border box and configure the specified view
[X]
Subroutine ZES2 (category: Utility routines)
Zero-fill a specific page