Skip to navigation


Stardust: STARS2

[NES version, Bank 1]

Name: STARS2 [Show more] Type: Subroutine Category: Stardust Summary: Process the stardust for the left or right view Deep dive: Stardust in the side views Sprite usage in NES Elite
Context: See this subroutine in context in the source code References: This subroutine is called as follows: * STARS calls STARS2

This moves the stardust sideways according to our speed and which side we are looking out of, and applies our current pitch and roll to each particle of dust, so the stardust moves correctly when we steer our ship. These are the calculations referred to in the commentary: 1. delta_x = 8 * 256 * speed / z_hi 2. x = x + delta_x 3. x = x + beta * y 4. y = y - beta * x 5. x = x - alpha * x * y 6. y = y + alpha * y * y + alpha For more information see the deep dive on "Stardust in the side views".
Arguments: X The view to process: * X = 1 for left view * X = 2 for right view
.STARS2 LDA #0 ; Set A to 0 so we can use it to capture a sign bit CPX #2 ; If X >= 2 then the C flag is set ROR A ; Roll the C flag into the sign bit of A and store in STA RAT ; RAT, so: ; ; * Left view, C is clear so RAT = 0 (positive) ; ; * Right view, C is set so RAT = 128 (negative) ; ; RAT represents the end of the x-axis where we want new ; stardust particles to come from: positive for the left ; view where new particles come in from the right, ; negative for the right view where new particles come ; in from the left EOR #%10000000 ; Set RAT2 to the opposite sign, so: STA RAT2 ; ; * Left view, RAT2 = 128 (negative) ; ; * Right view, RAT2 = 0 (positive) ; ; RAT2 represents the direction in which stardust ; particles should move along the x-axis: negative for ; the left view where particles go from right to left, ; positive for the right view where particles go from ; left to right JSR ST2 ; Call ST2 to flip the signs of the following if this is ; the right view: ALPHA, ALP2, ALP2+1, BET2 and BET2+1 LDY NOSTM ; Set Y to the current number of stardust particles, so ; we can use it as a counter through all the stardust .STL2 SETUP_PPU_FOR_ICON_BAR ; If the PPU has started drawing the icon bar, configure ; the PPU to use nametable 0 and pattern table 0 LDA SZ,Y ; Set A = ZZ = z_hi STA ZZ ; We also set ZZ to the original value of z_hi, which we ; use below to remove the existing particle LSR A ; Set A = z_hi / 8 LSR A LSR A JSR DV41 ; Call DV41 to set the following: ; ; (P R) = 256 * DELTA / A ; = 256 * speed / (z_hi / 8) ; = 8 * 256 * speed / z_hi ; ; This represents the distance we should move this ; particle along the x-axis, let's call it delta_x LDA P ; Store the high byte of delta_x in newzp STA newzp EOR RAT2 ; Set S = P but with the sign from RAT2, so we now have STA S ; the distance delta_x with the correct sign in (S R): ; ; (S R) = delta_x ; = 8 * 256 * speed / z_hi ; ; So (S R) is the delta, signed to match the direction ; the stardust should move in, which is result 1 above LDA SXL,Y ; Set (A P) = (x_hi x_lo) STA P ; = x LDA SX,Y STA X1 ; Set X1 = A, so X1 contains the original value of x_hi, ; which we use below to remove the existing particle JSR ADD ; Call ADD to calculate: ; ; (A X) = (A P) + (S R) ; = x + delta_x STA S ; Set (S R) = (A X) STX R ; = x + delta_x SETUP_PPU_FOR_ICON_BAR ; If the PPU has started drawing the icon bar, configure ; the PPU to use nametable 0 and pattern table 0 LDA SY,Y ; Set A = y_hi STA Y1 ; Set Y1 = A, so Y1 contains the original value of y_hi, ; which we use below to remove the existing particle EOR BET2 ; Give A the correct sign of A * beta, i.e. y_hi * beta LDX BET1 ; Fetch |beta| from BET1, the pitch angle JSR MULTS-2 ; Call MULTS-2 to calculate: ; ; (A P) = X * A ; = beta * y_hi JSR ADD ; Call ADD to calculate: ; ; (A X) = (A P) + (S R) ; = beta * y + x + delta_x STX XX ; Set XX(1 0) = (A X), which gives us results 2 and 3 STA XX+1 ; above, done at the same time: ; ; x = x + delta_x + beta * y LDX SYL,Y ; Set (S R) = (y_hi y_lo) STX R ; = y LDX Y1 STX S LDX BET1 ; Fetch |beta| from BET1, the pitch angle EOR BET2+1 ; Give A the opposite sign to x * beta JSR MULTS-2 ; Call MULTS-2 to calculate: ; ; (A P) = X * A ; = -beta * x JSR ADD ; Call ADD to calculate: ; ; (A X) = (A P) + (S R) ; = -beta * x + y STX YY ; Set YY(1 0) = (A X), which gives us result 4 above: STA YY+1 ; ; y = y - beta * x LDX ALP1 ; Set X = |alpha| from ALP2, the roll angle EOR ALP2 ; Give A the correct sign of A * alpha, i.e. y_hi * ; alpha JSR MULTS-2 ; Call MULTS-2 to calculate: ; ; (A P) = X * A ; = alpha * y STA Q ; Set Q = high byte of alpha * y LDA XX ; Set (S R) = XX(1 0) STA R ; = x LDA XX+1 ; STA S ; and set A = y_hi at the same time EOR #%10000000 ; Flip the sign of A = -x_hi JSR MAD ; Call MAD to calculate: ; ; (A X) = Q * A + (S R) ; = alpha * y * -x + x STA XX+1 ; Store the high byte A in XX+1 TXA ; Store the low byte X in x_lo STA SXL,Y ; So (XX+1 x_lo) now contains result 5 above: ; ; x = x - alpha * x * y SETUP_PPU_FOR_ICON_BAR ; If the PPU has started drawing the icon bar, configure ; the PPU to use nametable 0 and pattern table 0 LDA YY ; Set (S R) = YY(1 0) STA R ; = y LDA YY+1 ; STA S ; and set A = y_hi at the same time JSR MAD ; Call MAD to calculate: ; ; (A X) = Q * A + (S R) ; = alpha * y * y_hi + y STA S ; Set (S R) = (A X) STX R ; = y + alpha * y * y LDA #0 ; Set P = 0 STA P LDA ALPHA ; Set A = alpha, so: ; ; (A P) = (alpha 0) ; = alpha / 256 ; Calculate the following: ; ; (YY+1 y_lo) = (A P) + (S R) ; = alpha * 256 + y + alpha * y * y ; ; i.e. y = y + alpha / 256 + alpha * y^2, which is ; result 6 above JSR ADD ; Set (A X) = (A P) + (S R) STA YY+1 ; Set YY+1 to A, the high byte of the result TXA ; Set SYL+Y to X, the low byte of the result STA SYL,Y ; We now have our newly moved stardust particle at ; x-coordinate (XX+1 x_lo) and y-coordinate (YY+1 y_lo) ; and distance z_hi, so we draw it if it's still on ; screen, otherwise we recycle it as a new bit of ; stardust and draw that LDA XX+1 ; Set X1 and x_hi to the high byte of XX in XX+1, so STA SX,Y ; the new x-coordinate is in (x_hi x_lo) and the high STA X1 ; byte is in X1 AND #%01111111 ; Set A = |x_hi| CMP #120 ; If |x_hi| >= 120 then jump to KILL2 to recycle this BCS KILL2 ; particle, as it's gone off the side of the screen, ; and rejoin at STC2 with the new particle EOR #%01111111 ; Set A = ~|x_hi|, which is the same as -(x_hi + 1) ; using two's complement CMP newzp ; If newzp <= -(x_hi + 1), then the particle has been BCC KILL2 ; moved off the side of the screen and has wrapped BEQ KILL2 ; round to the other side, jump to KILL2 to recycle this ; particle and rejoin at STC2 with the new particle ; ; In the original BBC Micro versions, this test simply ; checks whether |x_hi| >= 116, but this version using ; newzp doesn't hard-code the screen width, so this is ; presumably a change that was introduced to support ; the different screen sizes of the other platforms LDA YY+1 ; Set Y1 and y_hi to the high byte of YY in YY+1, so STA SY,Y ; the new x-coordinate is in (y_hi y_lo) and the high STA Y1 ; byte is in Y1 AND #%01111111 ; If |y_hi| >= 116 then jump to ST5 to recycle this CMP #116 ; particle, as it's gone off the top or bottom of the BCS ST5 ; screen, and rejoin at STC2 with the new particle .STC2 JSR PIXEL2 ; Draw a stardust particle at (X1,Y1) with distance ZZ, ; i.e. draw the newly moved particle at (x_hi, y_hi) ; with distance z_hi DEY ; Decrement the loop counter to point to the next ; stardust particle BEQ ST2 ; If we have just done the last particle, skip the next ; instruction to return from the subroutine JMP STL2 ; We have more stardust to process, so jump back up to ; STL2 for the next particle ; Fall through into ST2 to restore the signs of the ; following if this is the right view: ALPHA, ALP2, ; ALP2+1, BET2 and BET2+1 .ST2 LDA ALPHA ; If this is the right view, flip the sign of ALPHA EOR RAT STA ALPHA LDA ALP2 ; If this is the right view, flip the sign of ALP2 EOR RAT STA ALP2 EOR #%10000000 ; If this is the right view, flip the sign of ALP2+1 STA ALP2+1 LDA BET2 ; If this is the right view, flip the sign of BET2 EOR RAT STA BET2 EOR #%10000000 ; If this is the right view, flip the sign of BET2+1 STA BET2+1 RTS ; Return from the subroutine .KILL2 JSR DORND ; Set A and X to random numbers STA Y1 ; Set y_hi and Y1 to random numbers, so the particle STA SY,Y ; starts anywhere along the y-axis LDA #115 ; Make sure A is at least 115 and has the sign in RAT ORA RAT STA X1 ; Set x_hi and X1 to A, so this particle starts on the STA SX,Y ; correct edge of the screen for new particles BNE STF1 ; Jump down to STF1 to set the z-coordinate (this BNE is ; effectively a JMP as A will never be zero) .ST5 JSR DORND ; Set A and X to random numbers STA X1 ; Set x_hi and X1 to random numbers, so the particle STA SX,Y ; starts anywhere along the x-axis LDA #126 ; Make sure A is at least 126 and has the sign in AL2+1, ORA ALP2+1 ; the flipped sign of the roll angle alpha STA Y1 ; Set y_hi and Y1 to A, so the particle starts at the STA SY,Y ; top or bottom edge, depending on the current roll ; angle alpha .STF1 JSR DORND ; Set A and X to random numbers ORA #8 ; Make sure A is at least 8 and store it in z_hi and STA ZZ ; ZZ, so the new particle starts at any distance from STA SZ,Y ; us, but not too close BNE STC2 ; Jump up to STC2 to draw this new particle (this BNE is ; effectively a JMP as A will never be zero)